Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.038
Filtrar
1.
Sleep Med ; 117: 201-208, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583319

RESUMO

OBJECTIVE: The current electroencephalography (EEG) measurement setup is complex, laborious to set up, and uncomfortable for patients. We hypothesize that differences in EEG signal characteristics for sleep staging between the left and right hemispheres are negligible; therefore, there is potential to simplify the current measurement setup. We aimed to investigate the technical hemispheric differences in EEG signal characteristics along with electrooculography (EOG) signals during different sleep stages. METHODS: Type II portable polysomnography (PSG) recordings of 50 patients were studied. Amplitudes and power spectral densities (PSDs) of the EEG and EOG signals were compared between the left (C3-M2, F3-M2, O1-M2, and E1-M2) and the right (C4-M1, F4-M1, O2-M1, and E2-M2) hemispheres. Regression analysis was performed to investigate the potential influence of sleep stages on the hemispheric differences in PSDs. Wilcoxon signed-rank tests were also employed to calculate the effect size of hemispheres across different frequency bands and sleep stages. RESULTS: The results showed statistically significant differences in signal characteristics between hemispheres, but the absolute differences were minor. The median hemispheric differences in amplitudes were smaller than 3 µv with large interquartile ranges during all sleep stages. The absolute and relative PSD characteristics were highly similar between hemispheres in different sleep stages. Additionally, there were negligible differences in the effect size between hemispheres across all sleep stages. CONCLUSIONS: Technical signal differences between hemispheres were minor across all sleep stages, indicating that both hemispheres contain similar information needed for sleep staging. A reduced measurement setup could be suitable for sleep staging without the loss of relevant information.


Assuntos
Fases do Sono , Sono , Humanos , Eletroencefalografia/métodos , Polissonografia , Eletroculografia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38635384

RESUMO

Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep staging among PSG recordings, respectively. However, EEG is complex to collect and sensitive to environment noise or other body activities, imbedding its use in clinical practice. Comparatively, EOG is much more easily to be obtained. In order to make full use of the powerful ability of EEG and the easy collection of EOG, we propose a novel framework to simplify multimodal sleep staging with a single EOG modality. It still performs well with only EOG modality in the absence of the EEG. Specifically, we first model the correlation between EEG and EOG, and then based on the correlation we generate multimodal features with time and frequency guided generators by adopting the idea of generative adversarial learning. We collected a real-world sleep dataset containing 67 recordings and used other four public datasets for evaluation. Compared with other existing sleep staging methods, our framework performs the best when solely using the EOG modality. Moreover, under our framework, EOG provides a comparable performance to EEG.


Assuntos
Algoritmos , Eletroencefalografia , Eletroculografia , Polissonografia , Fases do Sono , Humanos , Eletroencefalografia/métodos , Fases do Sono/fisiologia , Polissonografia/métodos , Eletroculografia/métodos , Masculino , Adulto , Feminino , Adulto Jovem
3.
Comput Biol Med ; 173: 108314, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513392

RESUMO

Sleep staging is a vital aspect of sleep assessment, serving as a critical tool for evaluating the quality of sleep and identifying sleep disorders. Manual sleep staging is a laborious process, while automatic sleep staging is seldom utilized in clinical practice due to issues related to the inadequate accuracy and interpretability of classification results in automatic sleep staging models. In this work, a hybrid intelligent model is presented for automatic sleep staging, which integrates data intelligence and knowledge intelligence, to attain a balance between accuracy, interpretability, and generalizability in the sleep stage classification. Specifically, it is built on any combination of typical electroencephalography (EEG) and electrooculography (EOG) channels, including a temporal fully convolutional network based on the U-Net architecture and a multi-task feature mapping structure. The experimental results show that, compared to current interpretable automatic sleep staging models, our model achieves a Macro-F1 score of 0.804 on the ISRUC dataset and 0.780 on the Sleep-EDFx dataset. Moreover, we use knowledge intelligence to address issues of excessive jumps and unreasonable sleep stage transitions in the coarse sleep graphs obtained by the model. We also explore the different ways knowledge intelligence affects coarse sleep graphs by combining different sleep graph correction methods. Our research can offer convenient support for sleep physicians, indicating its significant potential in improving the efficiency of clinical sleep staging.


Assuntos
Fases do Sono , Sono , Polissonografia/métodos , Eletroencefalografia/métodos , Eletroculografia/métodos
4.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475079

RESUMO

The article outlines various approaches to developing a fuzzy decision algorithm designed for monitoring and issuing warnings about driver drowsiness. This algorithm is based on analyzing EOG (electrooculography) signals and eye state images with the aim of preventing accidents. The drowsiness warning system comprises key components that learn about, analyze and make decisions regarding the driver's alertness status. The outcomes of this analysis can then trigger warnings if the driver is identified as being in a drowsy state. Driver drowsiness is characterized by a gradual decline in attention to the road and traffic, diminishing driving skills and an increase in reaction time, all contributing to a higher risk of accidents. In cases where the driver does not respond to the warnings, the ADAS (advanced driver assistance systems) system should intervene, assuming control of the vehicle's commands.


Assuntos
Condução de Veículo , Acidentes de Trânsito/prevenção & controle , Eletroculografia , Algoritmos , Vigília
5.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257633

RESUMO

Electrooculography (EOG) serves as a widely employed technique for tracking saccadic eye movements in a diverse array of applications. These encompass the identification of various medical conditions and the development of interfaces facilitating human-computer interaction. Nonetheless, EOG signals are often met with skepticism due to the presence of multiple sources of noise interference. These sources include electroencephalography, electromyography linked to facial and extraocular muscle activity, electrical noise, signal artifacts, skin-electrode drifts, impedance fluctuations over time, and a host of associated challenges. Traditional methods of addressing these issues, such as bandpass filtering, have been frequently utilized to overcome these challenges but have the associated drawback of altering the inherent characteristics of EOG signals, encompassing their shape, magnitude, peak velocity, and duration, all of which are pivotal parameters in research studies. In prior work, several model-based adaptive denoising strategies have been introduced, incorporating mechanical and electrical model-based state estimators. However, these approaches are really complex and rely on brain and neural control models that have difficulty processing EOG signals in real time. In this present investigation, we introduce a real-time denoising method grounded in a constant velocity model, adopting a physics-based model-oriented approach. This approach is underpinned by the assumption that there exists a consistent rate of change in the cornea-retinal potential during saccadic movements. Empirical findings reveal that this approach remarkably preserves EOG saccade signals, resulting in a substantial enhancement of up to 29% in signal preservation during the denoising process when compared to alternative techniques, such as bandpass filters, constant acceleration models, and model-based fusion methods.


Assuntos
Aceleração , Movimentos Sacádicos , Humanos , Eletroculografia , Algoritmos , Encéfalo
6.
Comput Methods Programs Biomed ; 244: 107992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218118

RESUMO

BACKGROUND AND OBJECTIVE: Sleep staging is an essential step for sleep disorder diagnosis, which is time-intensive and laborious for experts to perform this work manually. Automatic sleep stage classification methods not only alleviate experts from these demanding tasks but also enhance the accuracy and efficiency of the classification process. METHODS: A novel multi-channel biosignal-based model constructed by the combination of a 3D convolutional operation and a graph convolutional operation is proposed for the automated sleep stages using various physiological signals. Both the 3D convolution and graph convolution can aggregate information from neighboring brain areas, which helps to learn intrinsic connections from the biosignals. Electroencephalogram (EEG), electromyogram (EMG), electrooculogram (EOG) and electrocardiogram (ECG) signals are employed to extract time domain and frequency domain features. Subsequently, these signals are input to the 3D convolutional and graph convolutional branches, respectively. The 3D convolution branch can explore the correlations between multi-channel signals and multi-band waves in each channel in the time series, while the graph convolution branch can explore the connections between each channel and each frequency band. In this work, we have developed the proposed multi-channel convolution combined sleep stage classification model (MixSleepNet) using ISRUC datasets (Subgroup 3 and 50 random samples from Subgroup 1). RESULTS: Based on the first expert's label, our generated MixSleepNet yielded an accuracy, F1-score and Cohen kappa scores of 0.830, 0.821 and 0.782, respectively for ISRUC-S3. It obtained accuracy, F1-score and Cohen kappa scores of 0.812, 0.786, and 0.756, respectively for the ISRUC-S1 dataset. In accordance with the evaluations conducted by the second expert, the comprehensive accuracies, F1-scores, and Cohen kappa coefficients for the ISRUC-S3 and ISRUC-S1 datasets are determined to be 0.837, 0.820, 0.789, and 0.829, 0.791, 0.775, respectively. CONCLUSION: The results of the performance metrics by the proposed method are much better than those from all the compared models. Additional experiments were carried out on the ISRUC-S3 sub-dataset to evaluate the contributions of each module towards the classification performance.


Assuntos
Fases do Sono , Sono , Fases do Sono/fisiologia , Fatores de Tempo , Eletroencefalografia/métodos , Eletroculografia/métodos
7.
Psychophysiology ; 61(3): e14461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37855151

RESUMO

This study aimed to evaluate the utility and applicability of electrooculography (EOG) when studying ocular activity during complex motor behavior. Due to its lower spatial resolution relative to eye tracking (ET), it is unclear whether EOG can provide valid and accurate temporal measurements such as the duration of the Quiet Eye (QE), that is the uninterrupted dwell time on the visual target prior to and during action. However, because of its greater temporal resolution, EOG is better suited for temporal-spectral decomposition, a technique that allows us to distinguish between lower and higher frequency activity as a function of time. Sixteen golfers of varying expertise (novices to experts) putted 60 balls to a 4-m distant target on a flat surface while we recorded EOG, ET, performance accuracy, and putter kinematics. Correlational and discrepancy analyses confirmed that EOG yielded valid and accurate QE measurements, but only when using certain processing parameters. Nested cross-validation indicated that, among a set of ET and EOG temporal and spectral oculomotor features, EOG power was the most useful when predicting performance accuracy through robust regression. Follow-up cross-validation and correlational analyses revealed that more accurate performance was preceded by diminished lower-frequency activity immediately before movement initiation and elevated higher-frequency activity during movement recorded from the horizontal channel. This higher-frequency activity was also found to accompany a smoother movement execution. This study validates EOG algorithms (code provided) for measuring temporal parameters and presents a novel approach to extracting temporal and spectral oculomotor features during complex motor behavior.


Assuntos
Algoritmos , Movimentos Oculares , Humanos , Eletroculografia/métodos , Tecnologia de Rastreamento Ocular , Fenômenos Biomecânicos
8.
IEEE Trans Biomed Eng ; 71(2): 504-513, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37616137

RESUMO

OBJECTIVE: Brain-computer interfaces (BCIs) have tremendous application potential in communication, mechatronic control and rehabilitation. However, existing BCI systems are bulky, expensive and require laborious preparation before use. This study proposes a practical and user-friendly BCI system without compromising performance. METHODS: A hybrid asynchronous BCI system was developed based on an elaborately designed wearable electroencephalography (EEG) amplifier that is compact, easy to use and offers a high signal-to-noise ratio (SNR). The wearable BCI system can detect P300 signals by processing EEG signals from three channels and operates asynchronously by integrating blink detection. RESULT: The wearable EEG amplifier obtains high quality EEG signals and introduces preprocessing capabilities to BCI systems. The wearable BCI system achieves an average accuracy of 94.03±4.65%, an average information transfer rate (ITR) of 31.42±7.39 bits/min and an average false-positive rate (FPR) of 1.78%. CONCLUSION: The experimental results demonstrate the feasibility and practicality of the developed wearable EEG amplifier and BCI system. SIGNIFICANCE: Wearable asynchronous BCI systems with fewer channels are possible, indicating that BCI applications can be transferred from the laboratory to real-world scenarios.


Assuntos
Interfaces Cérebro-Computador , Dispositivos Eletrônicos Vestíveis , Eletroculografia , Eletroencefalografia/métodos , Comunicação
9.
Artigo em Inglês | MEDLINE | ID: mdl-38088999

RESUMO

Gaze estimation, as a technique that reflects individual attention, can be used for disability assistance and assisting physicians in diagnosing diseases such as autism spectrum disorder (ASD), Parkinson's disease, and attention deficit hyperactivity disorder (ADHD). Various techniques have been proposed for gaze estimation and achieved high resolution. Among these approaches, electrooculography (EOG)-based gaze estimation, as an economical and effective method, offers a promising solution for practical applications. OBJECTIVE: In this paper, we systematically investigated the possible EOG electrode locations which are spatially distributed around the orbital cavity. Afterward, quantities of informative features to characterize physiological information of eye movement from the temporal-spectral domain are extracted from the seven differential channels. METHODS AND PROCEDURES: To select the optimum channels and relevant features, and eliminate irrelevant information, a heuristical search algorithm (i.e., forward stepwise strategy) is applied. Subsequently, a comparative analysis of the impacts of electrode placement and feature contributions on gaze estimation is evaluated via 6 classic models with 18 subjects. RESULTS: Experimental results showed that the promising performance was achieved both in the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) within a wide gaze that ranges from -50° to +50°. The MAE and RMSE can be improved to 2.80° and 3.74° ultimately, while only using 10 features extracted from 2 channels. Compared with the prevailing EOG-based techniques, the performance improvement of MAE and RMSE range from 0.70° to 5.48° and 0.66° to 5.42°, respectively. CONCLUSION: We proposed a robust EOG-based gaze estimation approach by systematically investigating the optimal channel/feature combination. The experimental results indicated not only the superiority of the proposed approach but also its potential for clinical application. Clinical and translational impact statement: Accurate gaze estimation is a key step for assisting disabilities and accurate diagnosis of various diseases including ASD, Parkinson's disease, and ADHD. The proposed approach can accurately estimate the points of gaze via EOG signals, and thus has the potential for various related medical applications.


Assuntos
Transtorno do Espectro Autista , Doença de Parkinson , Humanos , Eletroculografia/métodos , Transtorno do Espectro Autista/diagnóstico , Doença de Parkinson/diagnóstico , Movimentos Oculares , Eletrodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38083276

RESUMO

Human-machine interfaces (HMIs) based on Electro-oculogram (EOG) signals have been widely explored. However, due to the individual variability, it is still challenging for an EOG-based eye movement recognition model to achieve favorable results among cross-subjects. The classical transfer learning methods such as CORrelation Alignment (CORAL), Transfer Component Analysis (TCA), and Joint Distribution Adaptation (JDA) are mainly based on feature transformation and distribution alignment, which do not consider similarities/dissimilarities between target subject and source subjects. In this paper, the Kullback-Leibler (KL) divergence of the log-Power Spectral Density (log-PSD) features of horizontal EOG (HEOG) between the target subject and each source subject is calculated for adaptively selecting partial subjects that suppose to have similar distribution with target subject for further training. It not only consider the similarity but also reduce computational consumption. The results show that the proposed approach is superior to the baseline and classical transfer learning methods, and significantly improves the performance of target subjects who have poor performance with the primary classifiers. The best improvement of Support Vector Machines (SVM) classifier has improved by 13.1% for subject 31 compared with baseline result. The preliminary results of this study demonstrate the effectiveness of the proposed transfer framework and provide a promising tool for implementing cross-subject eye movement recognition models in real-life scenarios.


Assuntos
Eletroencefalografia , Movimentos Oculares , Humanos , Eletroculografia/métodos , Eletroencefalografia/métodos , Movimento , Máquina de Vetores de Suporte
11.
Artigo em Inglês | MEDLINE | ID: mdl-38083601

RESUMO

The rise in population and aging has led to a significant increase in the number of individuals affected by common causes of vision loss. Early diagnosis and treatment are crucial to avoid the consequences of visual impairment. However, in early stages, many visual problems are making it difficult to detect. Visual adaptation can compensate for several visual deficits with adaptive eye movements. These adaptive eye movements may serve as indicators of vision loss. In this work, we investigate the association between eye movement and blurred vision. By using Electrooculography (EOG) to record eye movements, we propose a new tracking model to identify the deterioration of refractive power. We verify the technical feasibility of this method by designing a blurred vision simulation experiment. Six sets of prescription lenses and a pair of flat lenses were used to create different levels of blurring effects. We analyzed binocular movements through EOG signals and performed a seven-class classification using the ResNet18 architecture. The results revealed an average classification accuracy of 94.7% in the subject-dependent model. However, the subject-independent model presented poor performance, with the highest accuracy reaching only 34.5%. Therefore, the potential of an EOG-based visual quality monitoring system is proven. Furthermore, our experimental design provides a novel approach to assessing blurred vision.


Assuntos
Movimentos Oculares , Baixa Visão , Humanos , Eletroculografia/métodos , Transtornos da Visão
12.
Artigo em Inglês | MEDLINE | ID: mdl-38083634

RESUMO

Driving after consuming alcohol can be dangerous, as it negatively affects judgement, reaction time, coordination, and decision-making abilities, increasing the risk of accidents and putting oneself and other road users in danger. Therefore, it is critical to establish reliable and accurate methods to detect and assess intoxication levels. One such approach is electrooculography (EOG), a non-invasive technique that measures eye movements, which has been linked to intoxication levels and holds promise as a method of estimating them. In recent years, machine learning algorithms have been utilized to analyze EOG signals to estimate various physiological and behavioural states. The purpose of this study was to investigate the viability of using EOG analysis and machine learning to estimate intoxication levels in a simulated driving scenario. EOG signals were measured using JINS MEME_R smart glasses and the level of intoxication was simulated using drunk vision goggles. We employed traditional signal processing techniques and feature engineering strategies. For classification, we used boosted decision trees, obtaining a prediction accuracy of over 94% for a four-class classification problem. Our results indicate that EOG analysis and machine learning can be utilized to accurately estimate intoxication levels in a simulated driving scenario.


Assuntos
Algoritmos , Movimentos Oculares , Eletroculografia/métodos , Tempo de Reação , Aprendizado de Máquina
13.
Comput Biol Med ; 167: 107590, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897962

RESUMO

A large number of traffic accidents were caused by drowsiness while driving. In-vehicle alert system based on physiological signals was one of the most promising solutions to monitor driving fatigue. However, different physiological modalities can be used, and many relative studies compared different modalities without considering the implementation feasibility of portable or wearable devices. Moreover, evaluations of each modality in previous studies were based on inconsistent choices of fatigue label and signal features, making it hard to compare the results of different studies. Therefore, the modality comparison and fusion for continuous drowsiness estimation while driving was still unclear. This work sought to comprehensively compare widely-used physiological modalities, including forehead electroencephalogram (EEG), electrooculogram (EOG), R-R intervals (RRI) and breath, in a hardware setting feasible for portable or wearable devices to monitor driving fatigue. Moreover, a more general conclusion on modality comparison and fusion was reached based on the regression of features or their combinations and the awake-to-drowsy transition. Finally, the feature subset of fused modalities was produced by feature selection method, to select the optimal feature combination and reduce computation consumption. Considering practical feasibility, the most effective combination with the highest correlation coefficient was using forehead EEG or EOG, along with RRI and RRI-derived breath. If more comfort and convenience was required, the combination of RRI and RRI-derived breath was also promising.


Assuntos
Eletroencefalografia , Vigília , Humanos , Eletroencefalografia/métodos , Acidentes de Trânsito/prevenção & controle , Eletroculografia/métodos , Fadiga
14.
Rev. esp. geriatr. gerontol. (Ed. impr.) ; 58(5): [e101405], sept.- oct. 2023. ilus
Artigo em Espanhol | IBECS | ID: ibc-226125

RESUMO

Antecedentes La tasa de error anti-sacádico (AS) se utiliza como un medio diagnóstico para alteraciones neurológicas. El proceso natural del envejecimiento podría generar dificultad para realizar procesos paralelos neurales de inhibición motora y movimiento ocular consciente. Por lo tanto, si se le impone a una persona mayor el control del balance en posiciones bípedas durante un movimiento AS es esperable un aumento de la tasa de errores AS. Objetivo Estudiar los efectos del control postural sobre la tasa de error AS en un grupo de personas mayores y compararlos con los de un grupo de personas jóvenes. Métodos Se realizó una comparación intra e intergrupal de la tasa de error AS en un grupo experimental de personas mayores (PM) y otro grupo control de personas jóvenes (PJ). Para ello, se utilizaron bloques de movimientos AS y pro-sacádicos (control) aleatoriamente en 4 diferentes posturas: 1)sentado (SENT); 2)de pie normal (NORMAL); 3)pies juntos (REDUC), y 4)pies en línea (TANDEM). Resultados El grupo PM en comparación con el grupo PJ mostró aumento progresivo de la tasa de error AS desde la posición sentado a todas las posiciones de pie, con máxima tasa de error AS en posturas verticales más complejas. Por el contrario, el grupo PJ no presentó variabilidad significativa de la tasa de error AS en todas las posiciones. Conclusiones Se confirma que el proceso de envejecimiento se asocia a un aumento en la tasa de error AS. Este estudio revela por primera vez un aumento significativo en la tasa de error AS cuando se exige control del balance corporal a las PM, implicando una disminución en la capacidad de procesamiento múltiple en PM, para la ejecución de tareas complejas y paralelas (AU)


Background The anti-saccadic (AS) error-rate is used to diagnose neurological disorders. The natural aging process could generate difficulty in carrying out parallel neural processes of conscious motor inhibition and eye movement. Therefore, if balance control is imposed on an elderly person in biped positions during an AS movement, an increase in the AS error-rate is expected. Objective To study the effects of postural control on the AS error-rate in older people. Methods An intra and intergroup comparison was made of AS error-rate in an experimental group of older people (PM) and another control group of young people (PJ). For this, blocks of AS and pro-saccadic movements (control) were used randomly in four different postures: (1)sitting (SENT), (2)standing normally (NORMAL), (3)feet together (REDUC), and (4)feet in line (TANDEM). Results The PM group, compared to the PJ group, showed a progressive increase in the AS error-rate from the sitting position to all standing positions, with the maximum AS error-rate in more complex vertical postures. In contrast, the PJ group did not present significative variability of this AS error-rate in all positions Conclusions It is confirmed that the aging process is associated with an increase in the AS error-rate. This study reveals for the first time a significant increase in the AS error-rate when control of body balance is required for PM, implying a decrease in the multiple processing capacity in PM for the execution of complex and parallel tasks (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Movimentos Sacádicos , Equilíbrio Postural/fisiologia , Eletroculografia , Estudos de Casos e Controles
15.
Artigo em Inglês | MEDLINE | ID: mdl-37610901

RESUMO

While SSVEP-BCI has been widely developed to control external devices, most of them rely on the discrete control strategy. The continuous SSVEP-BCI enables users to continuously deliver commands and receive real-time feedback from the devices, but it suffers from the transition state problem, a period the erroneous recognition, when users shift their gazes between targets. To resolve this issue, we proposed a novel calibration-free Bayesian approach by hybridizing SSVEP and electrooculography (EOG). First, canonical correlation analysis (CCA) was applied to detect the evoked SSVEPs, and saccade during the gaze shift was detected by EOG data using an adaptive threshold method. Then, the new target after the gaze shift was recognized based on a Bayesian optimization approach, which combined the detection of SSVEP and saccade together and calculated the optimized probability distribution of the targets. Eighteen healthy subjects participated in the offline and online experiments. The offline experiments showed that the proposed hybrid BCI had significantly higher overall continuous accuracy and shorter gaze-shifting time compared to FBCCA, CCA, MEC, and PSDA. In online experiments, the proposed hybrid BCI significantly outperformed CCA-based SSVEP-BCI in terms of continuous accuracy (77.61 ± 1.36%vs. 68.86 ± 1.08% and gaze-shifting time (0.93 ± 0.06s vs. 1.94 ± 0.08s). Additionally, participants also perceived a significant improvement over the CCA-based SSVEP-BCI when the newly proposed decoding approach was used. These results validated the efficacy of the proposed hybrid Bayesian approach for the BCI continuous control without any calibration. This study provides an effective framework for combining SSVEP and EOG, and promotes the potential applications of plug-and-play BCIs in continuous control.


Assuntos
Interfaces Cérebro-Computador , Eletroculografia , Calibragem , Potenciais Evocados Visuais , Eletroculografia/instrumentação , Eletroculografia/normas , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Movimentos Sacádicos , Teorema de Bayes
16.
Sci Rep ; 13(1): 9868, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37332074

RESUMO

Smart eyeglasses with an integrated electrooculogram (EOG) device (JINS MEME ES_R®, JINS Inc.) were evaluated as a quantitative diagnostic tool for blepharospasm. Participants without blepharospasm (n = 21) and patients with blepharospasm (n = 19) undertook two voluntary blinking tests (light and fast) while wearing the smart eyeglasses. Vertical (Vv) and horizontal (Vh) components were extracted from time-series voltage waveforms recorded during 30 s of the blinking tests. Two parameters, the ratio between the maximum and minimum values in the power spectrum (peak-bottom ratio, Fourier transform analysis) and the mean amplitude of the EOG waveform (peak amplitude analysis) were calculated. The mean amplitude of Vh from light and fast blinking was significantly higher in the blepharospasm group than in the control group (P < 0.05 and P < 0.05). Similarly, the peak-bottom ratio of Vv from light and fast blinking was significantly lower in the blepharospasm group than in the control group (P < 0.05 and P < 0.05). The mean amplitude of Vh and peak-bottom ratio of Vv correlated with the scores determined using the Jankovic rating scale (P < 0.05 and P < 0.01). Therefore, these parameters are sufficiently accurate for objective blepharospasm classification and diagnosis.


Assuntos
Blefarospasmo , Piscadela , Eletroculografia , Óculos , Humanos , Blefarospasmo/diagnóstico , Fatores de Tempo
17.
Comput Biol Med ; 163: 107127, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37311382

RESUMO

Nowadays, many sleep staging algorithms have not been widely used in practical situations due to the lack of persuasiveness of generalization outside the given datasets. Thus, to improve generalization, we select seven highly heterogeneous datasets covering 9970 records with over 20k hours among 7226 subjects spanning 950 days for training, validation, and evaluation. In this paper, we propose an automatic sleep staging architecture called TinyUStaging using single-lead EEG and EOG. The TinyUStaging is a lightweight U-Net with multiple attention modules to perform adaptive recalibration of the features, including Channel and Spatial Joint Attention (CSJA) block and Squeeze and Excitation (SE) block. Noteworthily, to address the class imbalance problem, we design sampling strategies with probability compensation and propose a class-aware Sparse Weighted Dice and Focal (SWDF) loss function to improve the recognition rate for minority classes (N1) and hard-to-classify samples (N3) especially for OSA patients. Additionally, two hold-out sets containing healthy and sleep-disordered subjects are considered to verify the generalization. Facing the background of large-scale imbalanced heterogeneous data, we perform subject-wise 5-fold cross-validation on each dataset, and the results demonstrate that our model outperforms many methods, especially in N1, achieving an average overall accuracy, macro F1-score (MF1), and kappa of 84.62%, 79.6%, and 0.764 on heterogeneous datasets under optimal partitioning, providing a solid foundation for out-of-hospital sleep monitoring. Moreover, the overall standard deviation of MF1 under different folds remains within 0.175, indicating that the model is relatively stable.


Assuntos
Eletroencefalografia , Fases do Sono , Humanos , Eletroculografia/métodos , Polissonografia/métodos , Eletroencefalografia/métodos , Sono
18.
Zhongguo Zhen Jiu ; 43(5): 517-21, 2023 May 12.
Artigo em Chinês | MEDLINE | ID: mdl-37161804

RESUMO

OBJECTIVE: To observe the clinical efficacy of transcutaneous electrical acupoint stimulation (TEAS) at Changqiang (GV 1) based on the modulation of electro-oculogram (EOG) signal for children with mental retardation, and explore the evaluation effect of the goal attainment scale (GAS) in children with mental retardation. METHODS: Sixty children with mental retardation were randomly divided into a treatment group and a control group, with 30 cases in each one. The children in the control group were treated with conventional rehabilitation, 5 times a week. On the basis of the control group, TEAS at Changqiang (GV 1) under the modulation of EOG signal was adopted in the treatment group. When the similarity between the collected EOG signal and the template was within the range of EOG threshold, one electric stimulation was triggered at Changqiang (GV 1) for 20 s (continuous wave, 70-100 Hz in frequency, 0.1-0.2 ms in pulse width), lasting 30 min in each treatment, the intervention was given twice a week. One course of treatment was composed of 4 weeks, and 3 courses were required in total in the two groups. The infant-junior high school student's social living ability scale (S-M) and GAS were scored and compared before and after treatment in the two groups. RESULTS: After treatment, the scores of self-living ability in the treatment group and communication ability in the control group were higher than those before treatment (P<0.01, P<0.05). The scores of collective activity and motor ability in the treatment group were higher than those in the control group (P<0.05). After treatment, GAS scores were higher than before treatment in both groups (P<0.001), and the score in the treatment group was higher than the control group (P<0.05). CONCLUSION: TEAS under the modulation of EOG signal is conductive to improving the collective, motor and self-living abilities of the children with mental retardation and promoting children's individual goals. Compared with the standard score of S-M, the T value of GAS can better reflect the subtle progress of individual.


Assuntos
Deficiência Intelectual , Medicina , Lactente , Humanos , Criança , Deficiência Intelectual/terapia , Eletroculografia , Pontos de Acupuntura , Estimulação Elétrica
19.
Sensors (Basel) ; 23(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37177757

RESUMO

The work carried out in this paper consists of the classification of the physiological signal generated by eye movement called Electrooculography (EOG). The human eye performs simultaneous movements, when focusing on an object, generating a potential change in origin between the retinal epithelium and the cornea and modeling the eyeball as a dipole with a positive and negative hemisphere. Supervised learning algorithms were implemented to classify five eye movements; left, right, down, up and blink. Wavelet Transform was used to obtain information in the frequency domain characterizing the EOG signal with a bandwidth of 0.5 to 50 Hz; training results were obtained with the implementation of K-Nearest Neighbor (KNN) 69.4%, a Support Vector Machine (SVM) of 76.9% and Decision Tree (DT) 60.5%, checking the accuracy through the Jaccard index and other metrics such as the confusion matrix and ROC (Receiver Operating Characteristic) curve. As a result, the best classifier for this application was the SVM with Jaccard Index.


Assuntos
Algoritmos , Máquina de Vetores de Suporte , Humanos , Eletroculografia/métodos , Movimentos Oculares , Análise de Ondaletas
20.
Sensors (Basel) ; 23(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050641

RESUMO

With the rapid development of virtual reality (VR) technology and the market growth of social network services (SNS), VR-based SNS have been actively developed, in which 3D avatars interact with each other on behalf of the users. To provide the users with more immersive experiences in a metaverse, facial recognition technologies that can reproduce the user's facial gestures on their personal avatar are required. However, it is generally difficult to employ traditional camera-based facial tracking technology to recognize the facial expressions of VR users because a large portion of the user's face is occluded by a VR head-mounted display (HMD). To address this issue, attempts have been made to recognize users' facial expressions based on facial electromyogram (fEMG) recorded around the eyes. fEMG-based facial expression recognition (FER) technology requires only tiny electrodes that can be readily embedded in the HMD pad that is in contact with the user's facial skin. Additionally, electrodes recording fEMG signals can simultaneously acquire electrooculogram (EOG) signals, which can be used to track the user's eyeball movements and detect eye blinks. In this study, we implemented an fEMG- and EOG-based FER system using ten electrodes arranged around the eyes, assuming a commercial VR HMD device. Our FER system could continuously capture various facial motions, including five different lip motions and two different eyebrow motions, from fEMG signals. Unlike previous fEMG-based FER systems that simply classified discrete expressions, with the proposed FER system, natural facial expressions could be continuously projected on the 3D avatar face using machine-learning-based regression with a new concept named the virtual blend shape weight, making it unnecessary to simultaneously record fEMG and camera images for each user. An EOG-based eye tracking system was also implemented for the detection of eye blinks and eye gaze directions using the same electrodes. These two technologies were simultaneously employed to implement a real-time facial motion capture system, which could successfully replicate the user's facial expressions on a realistic avatar face in real time. To the best of our knowledge, the concurrent use of fEMG and EOG for facial motion capture has not been reported before.


Assuntos
Captura de Movimento , Realidade Virtual , Eletroculografia , Eletromiografia , Olho , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...